[1965]

# 457. Molecular Polarisability. Anisotropic Polarisability of the Cyanogroup from Molar Kerr Constants and Dipole Moments of Eight Nitriles

By R. J. W. LE FÈVRE, B. J. ORR, and G. L. D. RITCHIE

Molar Kerr constants and apparent dipole moments are recorded at  $25^{\circ}$ for acetonitrile, propionitrile, isobutyronitrile, t-butyl cyanide, chloroacetonitrile, trichloroacetonitrile, and benzonitrile, all in carbon tetrachloride, and for malononitrile in benzene. Inductive effects in these molecules are briefly discussed. Estimates of the anisotropic polarisability of the C-CN group in various environments are obtained. A regular increase of anisotropy is apparent for the C-CN group in the series MeCN, MeCH<sub>2</sub>·CN, Me<sub>2</sub>CH·CN, Me<sub>3</sub>C·CN. The C-CN data from MeCN are satisfactorily applicable to Cl<sub>3</sub>C·CN, whilst, for ClCH<sub>2</sub>·CN, those from Me<sub>2</sub>CH·CN are most appropriate. The results for CH<sub>2</sub>(CN)<sub>2</sub> are anomalous, suggesting either bending of the C-CN group, exaltation effects, or solute-solvent interactions. The C-CN group polarisability in C<sub>6</sub>H<sub>5</sub>·CN is much more anisotropic than in the aliphatic nitriles.

THE present measurements were initiated to extend, and test, existing information <sup>1a</sup> concerning the anisotropic polarisability of the C-CN group in nitriles. Previously recorded <sup>2a</sup> molar Kerr constants of acetonitrile and benzonitrile in carbon tetrachloride have been remeasured and complemented by measurements of the molar Kerr constants and dipole moments of propionitrile, isobutyronitrile, t-butyl cyanide, malononitrile, chloroacetonitrile, and trichloroacetonitrile. The results are summarised in Tables 1 and 2.

# EXPERIMENTAL

Solutes.-Liquids were dried over phosphoric oxide (except for benzonitrile, for which magnesium sulphate was used) and redistilled at ca. 760 mm. immediately before making up solutions; collection temperatures were: acetonitrile, 81°; propionitrile, 96°; isobutyronitrile, 103°; chloroacetonitrile, 126°; benzonitrile, 190°. t-Butyl cyanide, fractionally crystallised, had m. p. 17°. Malononitrile, fractionally crystallised and redistilled at 123°/30 mm., had m. p. 30°. A commercial sample of trichloroacetonitrile was used without purification.

Solvents.-Carbon tetrachloride was employed as solvent, except for benzene in the case of malononitrile. Solvents were fractionated and dried prior to use.

Apparatus.—Dielectric constants were determined with apparatus as in ref. 3, associated procedures giving polarisations being standard.<sup>1b</sup> Kerr effects were recorded photometrically.<sup>4</sup>

Results.—These are listed in usual form in Tables 1 and 2. The symbols are those previously explained, 16, 2, 3 and summarised.<sup>5</sup> For acetonitrile and benzonitrile, which have been examined already <sup>2a</sup> only the Kerr effect has been remeasured.

Previous Measurements.-The dipole moments in Table 2 are in reasonable agreement with recorded values.<sup>6</sup> The only previously determined  $_{\infty}(_{m}K_{2})$  values are for acetonitrile and benzonitrile,  $+219.5 \times 10^{-12}$  and  $+1147 \times 10^{-12}$ , respectively.<sup>22</sup> The Kerr constants of acetonitrile, propionitrile, and benzonitrile were recently determined in the pure liquid state.<sup>7</sup> The

<sup>1</sup> Le Fèvre, (a) J. Proc. Roy. Soc. New South Wales, 1961, 95, 1; (b) "Dipole Moments," Methuen, London, 3rd edn., 1953, ch. 2.

<sup>2</sup> Le Fèvre and Le Fèvre, (a) J., 1954, 1577; (b) J., 1953, 4041; (c) Rev. Pure Appl. Chem. (Australia).
1955, 5, 261; (d) Chapter XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience, New York, 3rd edn., Vol. I, p. 2459.
<sup>3</sup> Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
<sup>4</sup> Le Fèvre and Ritchie, J., 1963, 4933.

<sup>6</sup> Le Fèvre and Sundaram, J., 1962, 1494.
<sup>6</sup> Wesson, "Tables of Electric Dipole Moments," Technology Press, M.I.T., 1948; McClellan, "Tables of Experimental Dipole Moments," Freeman, San Francisco, 1963; Mansingh, Indian J. Pure Appl. Phys., 1964, 2, 33. 7 Hauser and Marshall, U.S. Dept. Com., Office Tech. Serv., P.B. Rept., 1961, 153, 981.

values of  $R_D$  calculated by summation of the appropriate bond values of Vogel *et al.*<sup>8</sup> are (for comparison with the observed values in Table 2): propionitrile, 15.8 c.c.; isobutyronitrile, 20.4 c.c.; t-butyl cyanide, 25.1 c.c.; malononitrile, 15.6 c.c.; chloroacetonitrile, 16.0 c.c.; trichloroacetonitrile, 26.2 c.c.

|   | TABLE 1                                  |                  |                                                             |                         |                                                        |                                             |                     |                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|---|------------------------------------------|------------------|-------------------------------------------------------------|-------------------------|--------------------------------------------------------|---------------------------------------------|---------------------|------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|   |                                          |                  | Incren                                                      | nental ]                | Kerr eff                                               | ects, di                                    | ielectri            | c const          | ants, et                      | c., for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | solution                      | ns at 2                          | 5°*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|   |                                          |                  |                                                             |                         | Acetor                                                 | ıitrile                                     |                     |                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benz                          | onitrile                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|   | $10^5 w_2$                               |                  | 242                                                         | 576                     | 652                                                    | 746                                         | 1242                | 1512             | 290                           | 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 575                           | 752                              | 891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 973          |
|   | $10^{10}\Delta E$                        | 3                | 128                                                         | 306                     | 367                                                    | 428                                         | 715                 | 847              | 310                           | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 619                           | 802                              | 956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1045         |
|   |                                          |                  | w                                                           | hence 2                 | $\Sigma \Delta B / \Sigma w$                           | $_{2} = 56$                                 | $1 \times 10$       | -7.              | wl                            | hence 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Sigma\Delta B/\Sigma u$     | $v_2 = 10$                       | $7.3 \times 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7.          |
|   |                                          |                  |                                                             |                         | Propio                                                 | nitrile                                     |                     | Isobutyronitrile |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|   | $10^{5}w_{2}$                            |                  | 247                                                         | 329                     | 408                                                    | 503                                         | 644                 | 662              | 349                           | 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 501                           | 630                              | 682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 720          |
|   | $10^{4}\Delta\varepsilon$                | •••              | 1079                                                        | 1449                    | 1777                                                   | 2172                                        | 2754                | 2823             | 1261                          | 1541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1809                          | 2269                             | 2451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2579         |
| _ | $10^{\circ}\Delta u$<br>$10^{4}\Delta n$ |                  | 300<br>4                                                    | 524                     | 048<br>7                                               | 9                                           | 1030                | 1050             | 585<br>7                      | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000<br>9                      | 1034                             | 1134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1197         |
|   | $10^{10}\Delta E$                        | 3                | $11\overline{2}$                                            | 151                     | 184                                                    | 226                                         | 286                 | 292              | 126                           | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 186                           | $2\overline{29}$                 | <b>246</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 262          |
|   | •                                        | when             | ce ΣΔε                                                      | $\Sigma w_2 =$          | 43·1, Σ                                                | $\Delta d / \Sigma w_2$                     | = -1                | 59,              | whence                        | ΣΔε/Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Ew_2 = 30$                   | 6·0, ΣΔα                         | $d/\Sigma w_2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1·67,       |
|   |                                          | $\Sigma\Delta$   | $n \mid \Sigma w_2$                                         | = -0.1                  | $17, \Sigma \Delta n^{2}$                              | $2/\Sigma w_2 =$                            | = -0.49             | Э,               | $\Sigma \Delta n /$           | $\Sigma w_2 = \sum_{n=1}^{\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^$ | -0.18,                        | $\sum \Delta n^2 / 2C \Lambda^2$ | $\Sigma w_2 = -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.53,       |
|   |                                          |                  | 24                                                          | $\Delta D / \Delta w_2$ | = 44.9                                                 | X 10 ·                                      | •                   |                  |                               | $\Delta\Delta E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $s / \Delta w_2 =$            | : 30·4 ×                         | ς 10 ·.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|   |                                          |                  | t-E                                                         | Butyl cy                | anide                                                  |                                             |                     |                  |                               | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lalononi                      | trile *                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|   | $10^{5}w_{2}$                            | •••              | 166                                                         | 303                     | 400 58                                                 | 8 703                                       | 3 727               | 10               | <sup>5</sup> w <sub>2</sub>   | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 493                           | 670 7                            | 99 966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1204         |
|   | $10^{4}\Delta\varepsilon$                | •••              | 523                                                         | 940 1.                  | $   \begin{array}{ccccccccccccccccccccccccccccccccccc$ | 5 2163                                      | 3 2222<br>1 1 9 9 0 | 10               | <sup>4</sup> Δε               | 643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1018 1                        | 386 16                           | 540 1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2468         |
| _ | $10^{\circ}\Delta a$<br>$10^{4}\Delta n$ | •••              | 282<br>3                                                    | 514 7                   | 073 99<br>8 1                                          | 1 1198                                      | 1230                | -10              | •∆a<br>•4∧n                   | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00<br>5                       | 97 I<br>7                        | 23 151<br>9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12           |
|   | $10^{10}\Delta E$                        | 3                | 48                                                          | 87                      | 116 17                                                 | 4 209                                       | 215                 | 10               | $5w_2$                        | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 493                           | 670 7                            | 99 801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 966          |
|   | whence                                   | ε ΣΔ             | $\varepsilon   \Sigma w_{*}$                                | = 30.8                  | $\Sigma \Delta d / \Sigma d$                           | $w_{2} = -$                                 | 1.69.               |                  | -                             | 1032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1092 1                        | 204 12                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|   | $\Sigma \Delta n$                        | $ \Sigma w $     | $_{2} = -0$                                                 | 0·20, Σ                 | $\Delta n^2 / \Sigma w_2$                              | = -0                                        | 58,                 | -10              | $\Delta^{11}\Delta B \dots$   | 50<br>959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 141                           | 152 1                            | .81 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 226          |
|   |                                          | Σ                | $\Delta B/\Sigma_{0}$                                       | $w_2 = 29$              | $0.4 \times 10^{-1}$                                   | -7.                                         |                     | _                |                               | 200<br> A = / \S =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00<br>00_/                    | 4/1 4<br>9 5 A JI                | /04<br>/ 5 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 14         |
|   |                                          |                  |                                                             |                         |                                                        |                                             |                     | v                | $\Sigma \Lambda n / \Sigma u$ | ⊿ε/ ∠u<br>'₀ ≕ —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $p_2 = 200$                   | 0, ΔΔα/<br>Λn²/Σw                | $2w_2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , 14,<br>31. |
|   |                                          |                  |                                                             |                         |                                                        |                                             |                     |                  | ,                             | $\Sigma \Delta B / \Sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $Ew_{2} = -$                  | $-2\cdot3_{6}\times$             | 10-7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01)          |
|   |                                          |                  |                                                             | ,                       | Chloroace                                              | otomitvil                                   | 0                   |                  |                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>wichlow</i>                | acetonit                         | vila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|   | 10570                                    |                  | 382                                                         | 440                     | 558                                                    | 622                                         | 769                 | 873              | 2002                          | 2921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3767                          | 4889                             | 5757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7163         |
|   | $10^4 \Delta \epsilon$                   |                  | 850                                                         | 980                     | 1236                                                   | 1375                                        | 1698                | 1919             | 1036                          | 1512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1957                          | 2538                             | 2990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3737         |
| - | $10^5\Delta d$                           | •••              | 224                                                         | 249                     | 320                                                    | 359                                         | 448                 | 505              | 388                           | 529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 668                           | 798                              | 978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1205         |
|   | $10^4\Delta n$                           |                  | 207                                                         | 4<br>226                | 6<br>490                                               | 6<br>470                                    | 7<br>597            | 8<br>679         | 5                             | 7<br>959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                            | 13                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19           |
|   | 10ΔΕ                                     | )<br>            | 291                                                         | - 006<br>- 15           | 440                                                    | 419                                         | 991                 | 014<br>20        | <i>414</i>                    | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 411<br>T F                    | 020                              | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 011          |
|   |                                          | $\Sigma \Lambda$ | ice $\Delta \Delta \varepsilon$<br>$n   \Sigma w_{\bullet}$ | = -0.                   | 10. ΣΔη                                                | $\Delta u / \Delta w_2$<br>$2/\Sigma w_0 =$ | = -0.2              | 98,<br>8.        | $\Sigma \Delta n/\Sigma$      | $\Sigma w_{o} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\omega w_2 = 5^{-1} - 0.026$ | $\Sigma \Delta n^2$              | $u_1 \Delta w_2 = \sum_{w_0 = 1}^{\infty} $ | -0.076       |
|   |                                          |                  | $\Sigma\Delta$                                              | $B/\Sigma w_2$          | = +7.6                                                 | $6 \times 10^{\circ}$                       | -7. 2               | -,               |                               | ΣΔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $B/\Sigma w_2 =$              | $=\overline{1\cdot 2_6}$         | < 10-7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,            |

\* All solutes were examined in carbon tetrachloride, except malononitrile, for which benzene was used.

TABLE 2

|                                   |                |            |                 | P                       | Rn                    |                   |         |       | 1012                    |
|-----------------------------------|----------------|------------|-----------------|-------------------------|-----------------------|-------------------|---------|-------|-------------------------|
| Solute                            | αει            | β          | $\gamma' n_1^2$ | (c.c.)                  | (c.c.)                | μ (D) *           | γ       | δ     | $\infty(\mathbf{m}K_2)$ |
| MeCN                              | 55·7 †         | -1.04 †    |                 |                         | 11.2 †                | 3.38 †            | -0.18   | 801   | +239                    |
| MeCH, CN                          | <b>43</b> ∙1 ΄ | -1·00      | -0.49           | 271.8                   | 16·0                  | 3·53 <sup>`</sup> | -0.12   | 640   | +256                    |
| Me,CH.CN                          | <b>36</b> ·0   | -1.02      | -0.53           | 289.6                   | 20.3                  | 3.62              | -0.15   | 520   | +262                    |
| Me <sub>s</sub> C·CN              | 30.8           | -1.02      | -0.58           | $302 \cdot 4$           | $24 \cdot 2$          | 3.68              | -0.14   | 420   | +254                    |
| CH <sub>2</sub> (CN) <sub>2</sub> | 20.6           | 0.165      | -0.31           | 274.8                   | 14.6                  | 3.56              | -0.01   | -5.76 | -72                     |
| CICH <sub>2</sub> ·CN             | $22 \cdot 1$   | -0.365     | -0.10           | 195.7                   | 15.4                  | 2.97              | -0.07   | 109   | +56.8                   |
| Cl <sub>s</sub> C•ČN              | $5 \cdot 20$   | -0.109     | -0.076          | 108.9                   | 26.3                  | 1.99              | -0.018  | 18.0  | +18.0                   |
| C <b>6</b> H₅•CN                  | 31.5 †         | -0.560 †   |                 |                         | <b>31</b> ∙6 †        | <b>4</b> ·02 †    | 0.08 †  | 1533  | +1174                   |
|                                   |                | * It is as | ssumed that     | at $_{\mathbf{D}}P = 1$ | ·05R <sub>D</sub> . † | From re           | ef. 2a. |       |                         |

Polarisations, refractions, dipole moments, and molar Kerr constants

<sup>8</sup> Vogel, Cresswell, Jeffery, and Leicester, J., 1952, 514.

#### TABLE 3

Bond angles in various nitrile molecules

| Molecule<br>Angle<br>Assumed<br>Lit. and ref | MeCH <sub>2</sub> •CN<br>CCC<br>110°<br>110.5° <sup>9</sup> | Me <sub>2</sub> CH·CN<br>CCC<br>110° | Me <sub>s</sub> C·CN<br>CCC<br>109·5°<br>109.5° <sup>10</sup> | CH <sub>2</sub> (CN) <sub>2</sub><br>CCC<br>114°<br>113.7° <sup>11</sup> | CICH <sub>2</sub> •CN<br>CCC1<br>112°<br>111•5° <sup>12</sup> | Cl <sub>3</sub> C·CN<br>CCCl<br>108·5° <b>*</b><br>109—110° <sup>18</sup> |
|----------------------------------------------|-------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|
|                                              |                                                             | * As in M                            | AeC·Cl <sub>a</sub> (ref. 4                                   | ).                                                                       |                                                               |                                                                           |

#### DISCUSSION

Molecular Geometry.—Bond angles used in the ensuing calculations are compared with literature values in Table 3. In all cases, the C-CN group has been assumed to be linear.

Magnitude and Direction of Dipole Moments.-For acetonitrile, t-butyl cyanide, malononitrile, trichloroacetonitrile, and benzonitrile, symmetry considerations allow unambiguous assignment of dipole-moment direction, but for the remaining molecules of the series it is necessary to make assumptions as to its direction.

For chloroacetonitrile, microwave studies <sup>12a</sup> indicate that the resultant dipole moment,  $\mu_{\rm res}$ , lies between the C–Cl and C–CN bond directions, at an angle of  $28^{\circ} \pm 3^{\circ}$  with the latter. Likewise, vectorial addition of the dipole moments 2a of acetonitrile (3.38 D) and methyl chloride (1.72 D), separated by 112°, yields a resultant of 3.17 D, inclined at 30° to the C-CN axis. It is therefore assumed that  $\mu_{res}$  of chloroacetonitrile (2.97 D, obs.) acts at 30° to the C-CN axis. It is of interest to note that the difference (-0.2 D) between the observed moment (2.97 D) and that calculated by addition of standard bond values (3.17 D) is of the same order as the corresponding differences for trichloroacetonitrile (-0.3 D) and malononitrile (-0.2 D), indicating similar apparent inductive effects in the three molecules.

The cases of propionitrile and isobutyronitrile may be treated in two ways: (a) inductive effects may be ignored, and  $\mu_{res}$  assumed to lie along the C–CN axes, or (b) the observed dipole moment may be regarded as the resultant of the acetonitrile dipole moment (3.38 D), directed along the C–CN axis, and an induced moment,  $\mu_{ind}$ , along each C–C bond adjacent to the C-CN group, as indicated by (I) and (II). Treatment (b) yields, for propionitrile,  $\mu_{ind} = 0.38 \text{ D}$  and  $\chi = 5.9^{\circ}$ , and, for isobutyrinitrile, 0.40 D and 6.4°. A similar treatment for t-butyl cyanide yields  $\mu_{ind} = 0.30$  D. It is perhaps significant that the moment



apparently induced in a C-C bond adjacent to the C-CN group is of the same order in each of the three molecules considered. Treatments (a) and (b) probably represent opposite extremes of the true picture of the molecular dipole moment, and both will therefore be considered in the ensuing calculations.

<sup>9</sup> Lerner and Dailey, J. Chem. Phys., 1957, 26, 678.

Rao, J. Amer. Chem. Soc., 1960, 82, 5048; Rajan, Proc. Indian Acad. Sci., 1961, 53A, 89.

<sup>&</sup>lt;sup>10</sup> Sparstad and Amble, J. Chem. Phys., 1957, 27, 317; Livingston and Rao, J. Amer. Chem. Soc., 1959, **81**, 3584.

<sup>&</sup>lt;sup>11</sup> Muller and Pritchard, J. Amer. Chem. Soc., 1958, 80, 3483; Hirota, J. Mol. Spectroscopy, 1961, 7,

 <sup>242.
 &</sup>lt;sup>12</sup> (a) Graybeal, J. Chem. Phys., 1960, 32, 1258; (b) Wada, Kikuchi, Matsumura, Hirota, and Morino, Bull. Chem. Soc. Japan, 1961, 34, 337. <sup>13</sup> Baker, Jenkins, Kenny, and Sugden, Trans. Faraday Soc., 1957, 53, 1397; Livingston, Page, and

The values of  $\chi$  for propionitrile and isobutyronitrile calculated by treatment (b) are of the same order as the corresponding angles (ca. 9 and 7°, respectively) estimated from the formal charge distribution data of Soundararajan.<sup>14</sup> Likewise, for chloroacetonitrile, Soundararajan's data indicate that  $\mu_{res}$  is directed at 23.5° to the C-CN axis.

C-CN Polarisabilities in MeCN, Me<sub>3</sub>C·CN, and Cl<sub>3</sub>C·CN.-These molecules should, from their symmetry, have molecular polarisability ellipsoids of revolution (*i.e.*, specifiable by semi-axes  $b_1$  and  $b_2 = b_3$ ). Since the resultant dipole moments act in directions which correspond to  $b_1$ , the differences  $(b_1 - b_2)$  can be computed from the  $_{\infty}(_{\rm m}K_2)$ 's and  $\mu$ 's of Table 2. The sums  $(b_1 + 2b_2)$  are drawn from the related electronic polarisations,  $_{\rm E}P$ . For acetonitrile, the refractivity data of Jeffery and Vogel  $^{15}$  have been extrapolated  $^{2a}$  to give  $_{\rm E}P = 10.85$  c.c. For t-butyl cyanide, summation of the appropriate bond values of Le Fèvre and Steel <sup>16</sup> gives  $_{\rm E}P = 24.53$  c.c. For trichloroacetonitrile,  $_{\rm E}P({\rm CCl}_3 \cdot {\rm CN}) =$  $_{\rm E}P({\rm CCl}_3 \cdot {\rm CH}_3) - _{\rm E}P({\rm CH}_3) + _{\rm E}P({\rm CN})$ , where  $_{\rm E}P({\rm CCl}_3 \cdot {\rm CH}_3)$  has been estimated 4 from data of Vogel <sup>17</sup> as 25.58 c.c., and  $_{\rm E}P({\rm CH}_{\rm a})$  and  $_{\rm E}P({\rm CN})$  are derivable from Le Fèvre-Steel bond values. The above formula gives  $_{\mathbb{B}}P(\text{CCl}_3\text{-CN}) = 25\cdot36$  c.c. Molecular semi-axes then emerge as in Table 4. The values of  $b_1$  and  $b_2$  for acetonitrile in Table 4 are to be compared with  $b_1 = 5.43$  and  $b_2 = 3.70$ , as in ref. 2a.

The values of b in Table 4, together with the usual polarisability values 1a for C-C and C-H, the polarisabilities of the CCl<sub>3</sub> group extracted from 1,1,1-trichloroethane,<sup>4</sup> the  $_{\mathbb{E}}P$  of the C-CN group given by Le Fèvre and Steel,<sup>16</sup> and the bond angles already discussed, afford estimates (Table 5) of the longitudinal and transverse polarisabilities of the C-CN group  $(b_{\rm L}^{\rm CN}$  and  $b_{\rm T}^{\rm CON} = b_{\rm V}^{\rm CON}$ , respectively). For acetonitrile, the previously

| TABLE | 4 |
|-------|---|
|-------|---|

# Calculation of semi-axes \* for MeCN, Me<sub>3</sub>C·CN, and Cl<sub>3</sub>C·CN

|                      | $_{\mathbf{E}}P$ (c.c.) | $(b_1 - b_2)$ | $(b_1 + 2b_2)$ | $b_1$ | $b_2 = b_3$ |
|----------------------|-------------------------|---------------|----------------|-------|-------------|
| MeCN                 | 10.85                   | 1.89          | 12.90          | 5.56  | 3.67        |
| Me <sub>3</sub> C•CN | 24.53                   | 1.68          | 29.17          | 10.84 | 9.16        |
| Cl <sub>s</sub> ȕCN  | 25.36                   | 0.41          | 30.16          | 10.33 | 9.92        |

\* Here, and elsewhere, polarisabilities are quoted in cubic Angström units  $(10^{-24} \text{ c.c.})$ .

TABLE 5

| Values of $b_{\rm L}$ | and $b_{\rm T}$ (= $b_{\rm V}$ ) for the | he C-CN group i                 | in MeCN, Me <sub>3</sub> C·CN, a         | nd Cl₃C·CN                                    |
|-----------------------|------------------------------------------|---------------------------------|------------------------------------------|-----------------------------------------------|
|                       | $b_{ m L}^{ m CCN}$                      | $b_{\mathrm{T}}^{\mathrm{CCN}}$ | $(b_{ m L}^{ m CCN}+2b_{ m T}^{ m CCN})$ | $(b_{\rm L}^{\rm CCN} - b_{\rm T}^{\rm CCN})$ |
| MeCN                  | 3.64                                     | 1.75                            | 7.14                                     | 1.89                                          |
| Me <sub>s</sub> C·CN  | 4.03                                     | 1.54                            | 7.11                                     | 2.49                                          |
| Cl <sub>3</sub> ȕCN   | 3.62                                     | 1.71                            | 7.04                                     | 1.91                                          |

estimated values <sup>1a</sup> are  $b_{\rm L}^{\rm OON} = 3.7$  and  $b_{\rm T}^{\rm OON} = 1.8$ . The close agreement between the CCN polarisabilities as extracted from acetonitrile and trichloroacetonitrile is to be noted. The increased anisotropy of the CCN group in t-butyl cyanide conforms to a trend already observed in the t-butyl halides,<sup>1a</sup> although the increase in anisotropy is considerably less in the present case.

Polarisabilities of MeCH<sub>2</sub>·CN and Me<sub>2</sub>CH·CN.—The symmetry of these molecules does not permit the derivation of unambiguous polarisability values. It is possible, however, to estimate the most appropriate bond-polarisabilities for the molecules, by comparing calculated values,  $_{m}K$  (calc.), of the molar Kerr constant with the observed quantities,  $_{\rm m}K$  (obs.).

Adopting the geometry previously indicated, values of  $b_1$ ,  $b_2$ ,  $b_3$  for both molecules

<sup>14</sup> Soundararajan, Indian J. Chem., 1963, 1, 503.

 <sup>&</sup>lt;sup>15</sup> Jeffery and Vogel, J., 1948, 675.
 <sup>16</sup> Le Fèvre and Steel, *Chem. and Ind.*, 1961, 670.

<sup>&</sup>lt;sup>17</sup> Vogel, J., 1948, 1850.

|                                                      | Evalu                                 | ation of                            | $_{m}K$ (calc.)                           | for MeCI                                 | H <sub>2</sub> ·CN and Me <sub>2</sub>                 | CH•CN                               |                                |                                |
|------------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------------------|--------------------------------|
| Source of $b^{\text{CCN}} b_{\text{I}}^{\text{CCN}}$ | $\sum_{L}^{CON}, b_{T}^{CON} * b_{1}$ | , b <sub>2</sub> , b <sub>3</sub> † | $\mu_1, \mu_2, \mu_3 \ddagger$            | $\frac{10^{12}{}_{\rm m}K}{\rm (calc.)}$ | $b_{ m L}^{ m CON}$ , $b_{ m T}^{ m CON}$ * $b_{ m T}$ | , b <sub>2</sub> , b <sub>3</sub> † | $\mu_1, \mu_2, \mu_3 \ddagger$ | $10^{12} \mathrm{m} K$ (calc.) |
|                                                      | MeCH <sub>2</sub> •CN.                | Treatm<br>along C-                  | ent (a), with<br>-CN                      | $\mu_{res}$                              | MeCH₂·CN.                                              | Treatm<br>along C·                  | ent (b), with<br>–Me           | $\mu_{	ext{ind}}$              |
| MeCN {                                               | 3·64<br>1·75<br>1·75                  | $7.24 \\ 5.81 \\ 5.22$              | $+3.482 \\ +0.579 \\ 0$                   | +231                                     | 3·64<br>1·75<br>1·75                                   | $7.24 \\ 5.81 \\ 5.22$              | $+3.403 \\ +0.931 \\ 0$        | +218                           |
| Me <sub>3</sub> C·CN {                               | $4.03 \\ 1.54 \\ 1.54$                | 7.62<br>5.61<br>5.01                | +3.506 + 0.410 0                          | +315                                     | 4.03<br>1.54<br>1.54                                   | $7.62 \\ 5.61 \\ 5.01$              | +3.444 + 0.766 0               | +301                           |
| Interpolated                                         | 3.75<br>1.67<br>1.67                  | 7·34<br>5·74<br>5·14                | $+3 \cdot 493 \\ +0 \cdot 513 \\ 0$       | +256                                     | 3-82<br>1-64<br>1-64                                   | $7.41 \\ 5.71 \\ 5.11$              | $+3.428 \\ +0.838 \\ 0$        | +257                           |
|                                                      | Me₂CH·CN.                             | Treatm<br>along C-                  | ent (a), with<br>-CN                      | $\mu_{ m res}$                           | Me₂CH•CN.                                              | Treatm<br>along C                   | ent (b), with<br>–Me           | $\mu_{	ext{ind}}$              |
| MeCN {                                               | 3·64<br>1·75<br>1·75                  | 8·87<br>7·06<br>7·73                | +3.590 + 0.466 = 0                        | +208                                     | $3.64 \\ 1.75 \\ 1.75$                                 | 8·87<br>7·06<br>7·73                | +3.517 + 0.870                 | +192                           |
| Me <sub>3</sub> C·CN {                               | 4.03<br>1.54<br>1.54                  | 9.25<br>6.86<br>7.52                | $+3.603 \\ +0.351 \\ 0$                   | +296                                     | 4.03<br>1.54<br>1.54                                   | $9.25 \\ 6.86 \\ 7.52$              | +3.543 + 0.757                 | +278                           |
| Interpolated                                         | 3·88<br>1·61                          | 9·10<br>6·93                        | $+\overset{\circ}{3}\cdot599 + 0\cdot386$ | +263                                     | 3.95<br>1.57                                           | 9·17<br>6·89                        | $+3.539 \\ +0.773$             | +262                           |

#### TABLE 6

# \* Listed, here and elsewhere, in descending order as $b_L^{\text{CON}}$ , $b_T^{\text{CON}}$ , and $b_V^{\text{CON}}$ . † Listed,

here and elsewhere, in descending order as  $b_1$ ,  $b_2$ ,  $b_3$ .  $\ddagger$  Listed, here and elsewhere, in descending order as  $\mu_1$ ,  $\mu_2$ ,  $\mu_3$ .

#### TABLE 7

#### Polarisabilities of the C-CN group

| Molecule                                                                                | MeCN | MeCH₂ ·CN   | Me <sub>2</sub> CH•CN | Me₃C·CN         |
|-----------------------------------------------------------------------------------------|------|-------------|-----------------------|-----------------|
| $b_{\rm L}^{\rm CON}$                                                                   | 3.64 | 3.8         | 3.9                   | $4 \cdot 0_{3}$ |
| $b_{\mathrm{T}}^{\overline{\mathrm{CON}}}$                                              | 1.75 | $1.6_{5}$   | 1.6                   | $1.5_{4}$       |
| $(\overline{b}_{\mathrm{L}}^{\mathrm{CCN}} - \overline{b}_{\mathrm{T}}^{\mathrm{CCN}})$ | 1.9  | $2 \cdot 2$ | $2 \cdot 3$           | 2.5             |

#### TABLE 8

## Evaluation of $_{\rm m}K$ (calc.) for MeCH<sub>2</sub>·CN and Me<sub>2</sub>CH·CN by the alternative approach

|                         |                        | Treatmen<br>alo         | nt (a), with $\mu_{res}$<br>ng C–CN | Treatment (b), with $\mu_{ind}$ along C-Me |                      |  |
|-------------------------|------------------------|-------------------------|-------------------------------------|--------------------------------------------|----------------------|--|
| Molecule                | b1, b2, b3             | $\mu_1, \mu_2, \mu_3$   | $10^{12} \mathrm{m} K$ (calc.)      | $\overline{\mu_1, \mu_2, \mu_3}$           | $10^{12}$ mK (calc.) |  |
| $MeCH_2 \cdot CN$       | $7.39 \\ 5.31 \\ 5.53$ | $+3.528 \\ -0.136 \\ 0$ | +272                                | $+3.522 \\ +0.225 \\ 0$                    | +271                 |  |
| Me <sub>2</sub> CH·CN { | 9·22<br>6·95<br>7·39   | $+3.618 \\ -0.127 \\ 0$ | +298                                | +3.612 + 0.283 = 0                         | +296                 |  |

have been calculated by addition of bond-polarisability tensors and diagonalisation of the resulting matrix, by use of standard procedures.<sup>1a,18</sup> Such calculations have been carried out with C-CN group polarisabilities obtained (i) from acetonitrile, (ii) from t-butyl cyanide and (iii) by interpolation in the results of (i) and (ii), with the requirements that  $(b_{\rm L}^{\rm CON} + 2b_{\rm T}^{\rm CON})$  is constant and that  $_{\rm m}K$  (calc.) =  $_{\rm m}K$  (obs.). These polarisability values, in conjunction with the dipole-moment components,  $\mu_1$ ,  $\mu_2$ ,  $\mu_3$ , along the axes of  $b_1$ ,  $b_2$ ,  $b_3$ , respectively, yield values of  $_{\rm m}K$  (calc.), which may be compared with the observed data.

<sup>18</sup> Eckert and Le Fèvre, J., 1962, 1081.

This procedure has been carried out (see Table 6) for both treatments (a) and (b) of the dipole-moment direction, as discussed above.

The values of  ${}_{\rm m}K$  (calc.) in Table 6 are to be compared with the  ${}_{\rm m}K$  (obs.) for propionitrile and isobutyronitrile of  $+256 \times 10^{-12}$  and  $+262 \times 10^{-12}$ , respectively. From the results obtained with the interpolated bond-polarisabilities, it may be concluded with considerable confidence that polarisabilities of the C-CN group in the series, acetonitrile, propionitrile, isobutyronitrile, and t-butyl cyanide, are as in Table 7. The regular gradation of anisotropy is to be noted.

An alternative approach to the interpretation of results for the aliphatic nitriles has also been attempted. This involves the assumption that the C-CN group has the same polarisability in propionitrile, isobutyronitrile, and t-butyl cyanide as in acetonitrile, and that the polarisability of a C-C bond adjacent to the C-CN group is different from its usual value.<sup>1a</sup> An estimate of  $b^{CC}$  (adjacent to CCN), obtained simply from  $b_1$ ,  $b_2$ ,  $b_3$  of t-butyl cyanide with the assumption that  $b^{CON}$  is as in acetonitrile, is  $b_{L}^{CO} = 0.33$ ,  $b_T = 0.58$ . The validity of this estimate may be tested by inserting the new  $b^{CO's}$  together with  $b^{CON}$ values extracted from acetonitrile, into calculations for propionitrile and isobutyronitrile. The values of  $_{m}K$  (calc.) obtained in this way are as in Table 8.

Comparison of the results of Table 8 with the observed  $_{m}K$ 's of propionitrile and isobutyronitrile ( $+256 \times 10^{-12}$  and  $+262 \times 10^{-12}$ , respectively) is not unsatisfactory, agreement being to within 6 and 13%, respectively This alternative interpretation of results may, therefore, be equally valid.

Polarisabilities of  $CH_2(CN)_2$  and  $ClCH_2 \cdot CN$ .—For malononitrile,  ${}_{m}K$  (calc.)'s have been evaluated, assuming the molecular geometry already indicated ( $\angle CCC = 114^\circ$ , with CCN linear), the usual C-H bond polarisability values,<sup>1a</sup> and C-CN group polarisabilities extracted (i) from acetonitrile and (ii) from t-butyl cyanide. Calculations have also been carried out for  $\angle CCC = 118^\circ$ . The results of such calculations are in Table 9.

The  $_{\rm m}K$  (calc.)'s of Table 9 differ markedly from the observed  $_{\rm m}K$  ( $-72 \times 10^{-12}$ ), a CCC bond angle as great as 118° being insufficient to reconcile  $_{\rm m}K$  (calc.) with  $_{\rm m}K$  (obs.). The suggestion <sup>19</sup> that the CCN group is slightly bent by 3° 40′ ± 2° 54′ might possibly account for this deviation. Alternatively, the large negative exaltation of  $R_{\rm D}$  (-1.0 c.c.) may suggest some electronic mechanism not allowed for in estimating  $_{\rm m}K$  (calc.). Further

|                            | Eva                         | aluation of $_{m}K$  | (calc.) for CH <sub>2</sub> (CN | $\left( \right)_{2}$   |                      |
|----------------------------|-----------------------------|----------------------|---------------------------------|------------------------|----------------------|
|                            |                             | CCC                  | $C = 114^{\circ}$               | CCC                    | $C = 118^{\circ}$    |
| Source of $b^{\text{CON}}$ | $\mu_1$ , $\mu_2$ , $\mu_3$ | $b_1, b_2, b_3$      | $10^{12} \mathrm{m} K$ (calc.)  | $b_1, b_2, b_3$        | $10^{12}$ mK (calc.) |
| MeCN {                     | 3·56<br>0<br>0              | 5·90<br>7·44<br>4·78 | -27                             | 5·78<br>7·56<br>4·78   | -52                  |
| Me <sub>3</sub> C•CN       | 3·56<br>0<br>0              | 5·84<br>7·86<br>4·36 | -33                             | $5.68 \\ 8.02 \\ 4.36$ | -66                  |

# TABLE 9

calculations show that experimental results are consistent with a bond angle of  $114^{\circ}$  and an exaltation of polarisability of -0.3 along  $b_1$ , or of +0.6 along  $b_2$ . Again, the poor agreement between  $_{\rm m}K$  (calc.) and  $_{\rm m}K$  (obs.) may be due to solute-solvent interactions in solutions of malononitrile in benzene. Hence, for malononitrile, a definite conclusion is not justified.

For chloroacetonitrile,  ${}_{m}K$  (calc.)'s have been evaluated, assuming the bond angle and dipole-moment direction already indicated, the usual C-H bond polarisability values,<sup>1a</sup> and C-CN and C-Cl polarisabilities obtained (i) from acetonitrile and methyl chloride,<sup>1a</sup>

<sup>19</sup> Hirota and Morino, Bull. Chem. Soc. Japan, 1960, 33, 705.

respectively, (ii) from t-butyl cyanide and t-butyl chloride, <sup>1a</sup> respectively, and (iii) by interpolation in the results of (i) and (ii) with respect to relative change of anisotropy of C-CN and C-Cl. The results of these calculations are in Table 10.

## TABLE 10

|                                             | Evaluat | tion of $_{m}K$ (cal | lc.) for ClCH <sub>2</sub> ·C | N                     |                                  |
|---------------------------------------------|---------|----------------------|-------------------------------|-----------------------|----------------------------------|
| Source of boon, boon                        | PCON    | Pcci                 | $b_1, b_2, b_3$               | $\mu_1, \mu_2, \mu_3$ | $10^{12}$ <sub>m</sub> K (calc.) |
| ſ                                           | 3.64    | 3.18                 | 7.35                          | +2.105                |                                  |
| MeCN, MeCl $\langle$                        | 1.75    | $2 \cdot 20$         | 5.98                          | +2.095                | +72                              |
|                                             | 1.75    | $2 \cdot 20$         | 5.23                          | 0                     |                                  |
| Ì                                           | 4.03    | 3.95                 | 7.74                          | +1.380                |                                  |
| Me <sub>3</sub> C·CN, Me <sub>3</sub> CCl { | 1.54    | 1.58                 | 5.92                          | +2.630                | +47                              |
| (                                           | 1.54    | 1.58                 | 4.40                          | 0                     |                                  |
| · (                                         | 3.87    | 3.73                 | 7.64                          | +1.634                |                                  |
| Interpolated {                              | 1.62    | 1.92                 | 6.06                          | +2.480                | +56                              |
| l                                           | 1.62    | 1.92                 | 4.82                          | 0                     |                                  |

The results of Table 10 are to be compared with an observed  ${}_{\rm m}K$  of  $+57 \times 10^{-12}$ . Although the above treatment is far from rigorous, the interpolated values of  $b^{\rm OCN}$  and  $b^{\rm OCI}$  probably represent the most reliable estimates which can be obtained for this molecule. The interpolated values of  $b^{\rm OCN}$  obtained for chloroacetonitrile are of the same order as those estimated for isobutyronitrile (Table 7), in contrast to trichloroacetonitrile, for which  $b^{\rm OCN}$  was as in acetonitrile (Table 5).

C-CN Polarisability in  $C_6H_5$ ·CN.—For this molecule, a knowledge of the  $_{\rm E}P$  (30·2 c.c.<sup>2a</sup>), light-scattering data (Le Fèvre and Rao <sup>20</sup> find  $10^3_{\infty}\delta_2^2 = 75\cdot22$ ), and the  $_{\infty}(_{\rm m}K_2)$  and  $\mu$  (Table 2) permit molecular polarisability semi-axes,  $b_1$ ,  $b_2$ ,  $b_3$ , to be evaluated unambiguously. The values of quantities derived in such a treatment are:

The above b's are to be compared with  $b_1 = 16\cdot 16$ ,  $b_2 = 11\cdot 60$ , and  $b_3 = 8\cdot 15$ , as reported previously.<sup>20</sup> Subtraction of the appropriate polarisability components of the  $C_6H_5$ group <sup>21</sup> gives  $b_{\rm L}^{\rm CON} = 5\cdot 71$ ,  $b_{\rm T}^{\rm CON} = 0\cdot 78$ ,  $b_{\rm V}^{\rm CON} = 1\cdot 58$ , compared with the previously reported <sup>20</sup> values of  $5\cdot 7$ ,  $1\cdot 1$ ,  $1\cdot 4_5$ , respectively. It is found that  $b_{\rm V}^{\rm CON}$  is greater than  $b_{\rm T}^{\rm CON}$ , as observed in aromatic halides.<sup>1a</sup> The anisotropy,  $(2b_{\rm L} - b_{\rm T} - b_{\rm V})/2$ , of the C-CN group in benzonitrile is  $4\cdot 5$ , which is much greater than that found for aliphatic nitriles [compare the  $(b_{\rm L} - b_{\rm T})$ 's of Table 7]. This may be attributed to resonance interactions between the  $\pi$ -electrons of the phenyl and cyano-groups.

The award of a C.S.I.R.O. Senior Postgraduate Studentship to B. J. O. is gratefully acknowledged.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

[Received, July 3rd, 1964.]

<sup>20</sup> Le Fèvre and Rao, J., 1958, 1465.

<sup>21</sup> Aroney and Le Fèvre, J., 1960, 3600.